



Contact: **Ben McCarron** 

ben.mccarron @asiareengage.com +65 8299 6852

# **Time Out:**

Why China's Power Companies Should Re-evaluate Their Coal Capex Plans

November 2016

"As an asset manager for major pension funds in the Netherlands, APG puts its utmost priority on implementing investment strategies which are strongly aligned with its clients' long-term ambitions. One of the clients' ambitions is to contribute to mitigating climate change risks by reducing the carbon footprint of equity portfolios by a significant 25% by 2020. We trust that this research (and related engagement) project is a crucial step in this direction."

YK Park, Director - Global Responsible Investment and Governance Team, APG

"China's 2030 commitments regarding carbon reductions, the launch of local carbon markets and tightening environmental regulations all point at an accelerating shift toward lower carbon power generation. However, the Chinese market remains under-researched as to the implications of this shift and corporate reporting on these impacts remains limited. This report provides a useful starting point by highlighting the risk exposure of key coal power generators in China. Investors now need more information on the extent to which companies stress-test their investment plans and enhance business resilience in the face of the transformation in the power sector."

Matthias Beer, Associate Director - Governance and Sustainable Investment, BMO Global Asset Management

"PGGM aims to halve the carbon footprint of the investment portfolio of our clients. This requires the utility companies we are invested in to become more carbon efficient. Expanding coal capacity undermines our carbon efficiency goal, putting the companies at risk of divestment from the portfolio. The potential divestment will also help us in managing climate risk in our portfolio, as high carbon assets will be at increasing risk in a decarbonizing world."

Pieter van Stijn, Senior Advisor Responsible Investment, PGGM

**Author:** Ben McCarron; Melissa Brown (Daobridge Capital)

Research: Lauri Myllyvirta, Sannie Chung, Xinyi Shen (Greenpeace East Asia); Baoyin Yuan;

Monica Khoo; Ghee Peh; Pek Shibao

**Cover photo:** Shubert Ciencia - Power Plant (Tianjin, China), CC BY 2.0, https://commons.wiki-media.org/w/index.php?curid=12263059

#### About Asia Research and Engagement (ARE)



Asia Research and Engagement (ARE) is an independent provider that helps financial institutions, companies, and civil society organisations understand and communicate the financial relevance of sustainability and governance issues. ARE provides specialist research, consultancy, and engagement services to helps its clients achieve their goals.

#### Supported by

Greenpeace East Asia



# **Executive Summary**

- There is a wall of capex flowing into coal power in China with very negative sustainability impacts
- At the same time, regulatory and market risks are rising
- The companies are failing to clearly communicate their strategy
- Investors should ensure money is spent in their interests before financial stresses grow

The seven leading listed Chinese power companies analysed in this briefing had plans in place at the beginning of 2016 to build up to 89 coal power plants with 68 GW of capacity over the next few years at an estimated cost of RMB 238 billion (USD 35 billion). But does all of this spend make sense?

This year we have seen a long list of regulations that will affect coal power prospects, including on sustainability factors – such as air, water, and carbon. At the same time, many provinces already face overcapacity, while new ultra-high voltage transmission capacity will bring pricing pressure even in poorly supplied regions.

The power companies' 2016 interim results led to downgrades across the sector as analysts digested bad news on sector fundamentals. In our review, we looked for the power companies' strategic responses to the continuing pressures and found worrying gaps. Plant utilisation trends continued to decline, affecting returns, yet the companies have not provided guidance on reductions to capex. They all have plans to build in regions exposed to high regulatory risk including for air and water standards. Overall, the disclosure does not allow investors to assess prospects for any of the companies.

We believe investors should apply greater scrutiny to capital expenditure plans and ask management to provide robust justification for continued spending or to cancel the investments. To support this dialogue, the following pages set out the investment projects per company, together with plant level analysis of air and water risks. This not only makes it clear where companies are taking on new capacity utilization risk, but also where they are compounding those risks with publicly sensitive regulatory risks.

The following table shows the summary figures per company on the basis of planned and permitted plants. Our research provides risk assessments for each plant based on local conditions for air pollution and water stress. The table shows the amount and proportion of capacity per company in the highest risk categories. These total 15 GW or 23% of the proposed 68 GW capacity additions.

While regulators have emphasised air and water, carbon related regulation is also a concern, especially as the Paris Climate Agreement came into force much quicker than expected on November 4, 2016. We estimated lifetime emissions for the plants on the



basis of 30 year lifespans at a total of  $7.2~{\rm GtCO_2}$ . This is approximately 1.6% of the total carbon dioxide emissions that can be emitted while holding temperature increases to two degrees. As the effects of climate change increase, so will the willingness to regulate to achieve China's commitment to peak emissions by 2030 or earlier. This increases regulatory risks for plants built today.

Figure 1: Planned coal power plant investments

|                             | Plants | Capacity<br>(GW) | Cost estimate (RMB billion) | Highest<br>risk (GW) | Highest<br>risk (%) | Estimated lifetime CO <sub>2</sub> (Mt) |
|-----------------------------|--------|------------------|-----------------------------|----------------------|---------------------|-----------------------------------------|
| China Power International   | 10     | 9.3              | 32.6                        | 2.0                  | 21                  | 958                                     |
| China Resources Power       | 12     | 9.8              | 34.4                        | 1.3                  | 13                  | 1,049                                   |
| China Shenhua Energy        | 19     | 18.6             | 65.2                        | 4.0                  | 21                  | 1,962                                   |
| Datang International Power  | 10     | 6.0              | 21.2                        | 0.7                  | 12                  | 672                                     |
| Guodian Power Development   | 14     | 9.4              | 32.8                        | 2.7                  | 29                  | 1,036                                   |
| Huadian Power International | 9      | 5.9              | 20.6                        | 0.7                  | 11                  | 616                                     |
| Huaneng Power International | 15     | 8.9              | 31.3                        | 4.0                  | 45                  | 981                                     |
| TOTAL                       | 89     | 68               | 238                         | 15                   | 23                  | 7,274                                   |

Source: Company reports, Coal Swarm, Greenpeace, ARE (China Resources Power and China Shenhua Energy do not provide lists of planned plants in their annual reports, so these are based on searches)

For investors in these companies, our top questions are:

- What are your detailed capex plans by plant and by province?
- What are your hurdle rates of return for new coal plants?
- How do the financial models for the new plants change in light of new regulations, particularly on air, water, and carbon, and other market dynamics?
- How have you changed your investment plans to reflect changing market conditions?

Investors should press companies to postpone or cancel spend where companies are unable to satisfactorily answer these questions.



# Changing markets, changing regulation

The power sector faces strategic challenges. In 2015 power demand growth sharply decelerated. This contributed to a continued trend of declining capacity utilisation. At the same time a wave of new regulation, particularly due to concerns over air and water pollution have introduced significant uncertainty into coal-fired power expansion plans.

#### A rash of regulation

Power supply is a central strategic interest for China. The major objectives for power development are set out in five year strategic plans. The latest energy plan, released in November 2016, includes a cap for coal capacity of 1,100 GW by 2020, up from the ceiling of 960 GW for the period to 2015. The plans signal a changing power mix with coal's share set at 55% of the total 2,000 projected capacity in 2020.

This announcement is one in a long line of high level policy statements addressing coalfired power in the last year. In many cases, there are new proposals that will change the return profile for planned power plants. In some cases, there are new regulations that reverse prior approvals. Overall, and despite the raised cap, this creates a highly uncertain basis for undertaking new capacity additions. Figure 2 lists some of the measures.

Figure 2: Selected coal power related regulations in 2016

| January   | NEA proposal for greener coal fired generation                  |
|-----------|-----------------------------------------------------------------|
| March     | NEA to suggest risk assessment for new coal build               |
| March     | NDRC, NEA ask local authorities to slow coal construction       |
| March     | NDRC to reform gas market and boost renewable share by 2020     |
| April     | National Energy Secretary highlights coal over-capacity risk    |
| April     | NDRC, NEA create coal construction risk assessment tools        |
| May       | NDRC guidance on promoting alternative energy                   |
| June      | NEA requires provinces coal approvals to align to national plan |
| June      | NDRC reforms transmission pricing and supports direct sales     |
| July      | NDRC, NEA announce multi-source demonstration projects          |
| July      | NDRC draft plans to implement market based power reforms        |
| July      | NDRC, NEA rules raise dispatch where coal supports renewables   |
| August    | Further guidelines on new power plant construction              |
| August    | NEA progress report on meeting fossil fuel targets              |
| September | Cancellation of coal fired projects                             |
| October   | Reiteration of coal fired oversupply and need for reduction     |
| November  | China's Power Sector 13th Five Year Plan Announced              |

Source: Various news, NDRC/NEA websites



#### Changing market dynamics

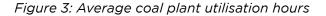
From 1999 to 2014 electricity generation in China grew at a compound annual rate of nearly 11% and did not fall below 6% growth in any one year. In 2015 it hit a brick wall, with growth of less than 0.3%. There are multiple changes: lower demand, shifts in market structure, and environmental concerns that now take a far stronger role in policy formation.

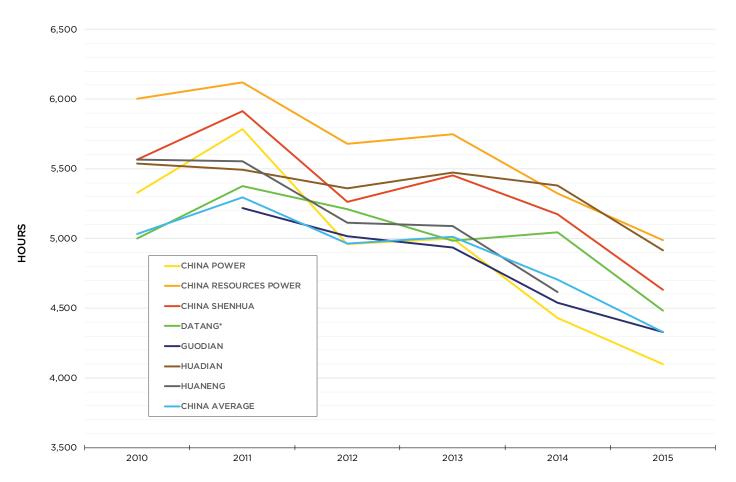
Demand has slowed partly as a response to lower economic growth. Beyond this, the link between power demand growth and GDP growth has been broken for a while. This has followed both a stronger emphasis on services over heavy industry and a drive for investments in energy efficient processes. The outlook is for continued, but more subdued growth in electricity demand.

The structure of supply is also changing. The new policy landscape favours a generation mix with less reliance on locally generated power and more direct sales to users. Renewable installations have increased, partly responding to policy and partly because costs have fallen consistently, particularly for solar, to become much more cost-competitive. These changes all place greater reliance on a better national and regional grid. The long distance high voltage transmission lines that bring in electricity from more distant provinces, such as Inner Mongolia, are a major example. This trend is supportive of a pattern of locating new coal-fired units in less urbanized provinces and closer to coal mines which can then export their power to more urbanized high demand provinces.

The big three sustainability factors – air, water, and carbon – are also driving change. Air pollution moved to centre stage in energy policy following the record air pollution in Beijing in January 2013. Water stress has also moved up the agenda. Power is thirsty and many power plants are in locations with constrained resources. These factors have already led to the closure of older coal plants. The risks around air pollution and water stress relate strongly to local conditions and decisions made at the provincial level.

Perhaps the biggest surprise this year has come from global efforts to address carbon. The Paris Climate Agreement was ratified on October 5, 2016, a blistering pace for such international treaties, to come into force on November 4, 2016. China's commitments include:


- to peak carbon dioxide emissions by 2030 or sooner
- to lower carbon dioxide emissions per unit of GDP by 60% to 65% from 2005 by 2030
- to increase non-fossil fuels in primary energy consumption to around 20% by 2030




China has introduced carbon markets as one of its policy pillars. This creates a clear policy signal for the power sector in the run up to the launch of the market in 2017. In the short term much will depend on the credibility of the implementation process and the price that the markets generate.

#### These factors have depressed sector fundamentals

This mix of factors has weighed on returns, primarily as it has led to reduced utilisation hours. China average coal utilisation hours declined in both 2014 and 2015 to reach 4329 hours. This is below 50% of available hours in a year (8760 hours for a non-leap year). Figure 3 shows the decline for each of the companies and the national average. This highlights the commercial risks and makes it more important for companies, and investors, to carefully consider the prospects for new plants.





<sup>\*</sup> For Datang the overall average utilisation hours are used for 2010 to 2013. Source: Annual Reports, ARE



# Provinces and plants

Many critical success factors for coal plants play out at the provincial level. Power demand and supply are both primarily local. Ultra-high voltage transmission lines change this, but in ways that are still relevant at the provincial level – provinces such as Inner Mongolia will have stronger distribution, whereas generators in Eastern provinces will have new sources of competition.

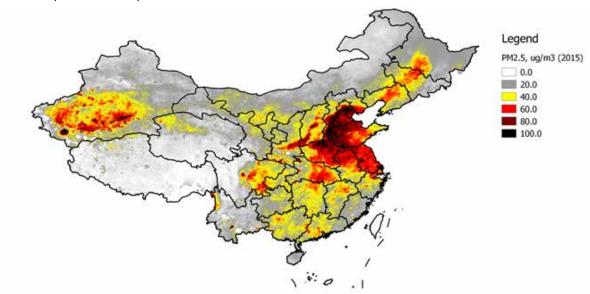
While some regulations are national, many regulatory decisions, including plant approvals, and monitoring and enforcement of standards are largely determined at the provincial level. This is particularly so for regulations relating to air pollution and water stress, which have a high level of regional variation. Carbon dioxide emissions are global in effect, but again, many regulations will require implementation at the provincial level.

Figure 4 sets out statistics for air pollution and water stress for each province. The air pollution measure considers the average amount of particulate matter smaller than 2.5 microns per cubic metre across each province (PM2.5).¹ For water, the measure used is Baseline Water Stress (BWS), which is the ratio between the amount of water withdrawn per year and the annual renewable water supply. As water stress is always a highly localized phenomenon, the statistic presented is the average across all sites in the province where there is a coal power station. In order to limit distortions from very high water stress sites, the contribution to the average for each site was capped at two.²

Figure 4: Air and water stats for each province

| Province | Average<br>PM2.5<br>(Mcg/m³) | Average<br>capped<br>BWS | Province | Average<br>PM2.5<br>(Mcg/m³) | Average<br>capped<br>BWS |
|----------|------------------------------|--------------------------|----------|------------------------------|--------------------------|
| Henan    | 80.7                         | 1.3                      | Shaanxi  | 52.0                         | 1.0                      |
| Beijing  | 80.4                         | 2.0                      | Zhejiang | 47.7                         | 0.4                      |
| Hebei    | 77.3                         | 1.9                      | Sichuan  | 46.7                         | 0.2                      |
| Tianjin  | 71.5                         | 2.0                      | Ningxia  | 45.8                         | 1.0                      |
| Shandong | 66.4                         | 1.8                      | Jiangxi  | 42.8                         | O.1                      |
| Hubei    | 65.9                         | 0.1                      | Qinghai  | 42.6                         | 1.7                      |
| Jiangsu  | 56.6                         | 0.6                      | Gansu    | 41.2                         | 1.3                      |

Average PM2.5 concentration (ug/m³) at plant location, based on data available at <a href="http://fizz.phys.dal.ca/~atmos/martin/?page\_id=140">http://giovanni.gsfc.nasa.gov/</a>. The dataset is averaged using the tools available at <a href="http://giovanni.gsfc.nasa.gov/">http://giovanni.gsfc.nasa.gov/</a>


<sup>2</sup> WRI Aqueduct baseline water stress queried from geospatial data at <a href="http://www.wri.org/resources/data-sets/aqueduct-global-maps-21-data">http://www.wri.org/resources/data-sets/aqueduct-global-maps-21-data</a>



| Shanxi    | 56.4 | 1.6 | I. Mongolia  | 41.0 | 1.0 |
|-----------|------|-----|--------------|------|-----|
| Anhui     | 55.1 | 0.4 | Guangxi      | 40.2 | 0.1 |
| Chongqing | 55.0 | 0.0 | Heilongjiang | 39.4 | 0.5 |
| Liaoning  | 55.0 | 1.2 | Guangdong    | 34.0 | 0.1 |
| Jilin     | 54.4 | 0.7 | Guizhou      | 31.7 | 0.1 |
| Shanghai  | 53.9 | 0.3 | Fujian       | 28.7 | 0.1 |
| Xinjiang  | 53.7 | 1.7 | Yunnan       | 28.0 | 0.1 |
| Hunan     | 52.5 | 0.1 | Hainan       | 19.3 | 0.0 |

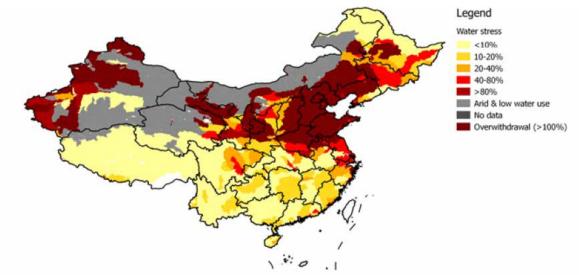

Source: NASA (2015 data), WRI (2010 data)

Figure 5: Air pollution map



Source: NASA, Greenpeace rendering

Figure 6: Water stress map



Source: WRI, Greenpeace rendering



#### Understanding province risk

We used a two-step process to understand the level of air and water risk in the capacity addition plans of the companies. In the first step we converted the province average air and water pollution data into risk factors.

The National Government has provided a national PM2.5 target of 35  $\mu$ g/m³. Consequently, we assigned risks as low for provinces with PM2.5 of less than 35  $\mu$ g/m³. We assigned Medium for readings above this level and High for provinces with averages above 50  $\mu$ g/m³. For air pollution, there are 16 High risk provinces, nine Medium risk provinces, and five Low risk provinces.

For water stress risk, we assigned as High risk provinces where the China coal-fleet average Baseline Water Stress (BWS) ratio<sup>3</sup> was above 0.8. We assigned Medium risk to provinces with average BWS (capped) between 0.4 and 0.8 and other provinces as Low risk. There were 13 High risk provinces, four Medium risk, and 13 Low risk provinces.

Figure 7 provides a breakdown for the planned capacity additions into provinces and by company, starting with the province with the highest planned capacity. It also provides the risk rating for the provinces.

The table shows a broad geographic spread of planned investments, with 17 provinces represented out of a total of 30 (excluding special administrative regions). Anhui is the province with the highest capacity additions. It has a High air pollution risk rating – the ninth highest average particulate matter, well in excess of government targets, though water is less of a challenge for the province compared to the others.

Shanxi, a major coal mining province, is notable as the province with the second largest additions and a High risk rating for both air pollution and water stress. Shandong, Henan, Shaanxi, Hebei, and Liaoning are also provinces assessed as High for both air and water.

The planned capacity additions in High air risk provinces are 40.8 GW or 60% of total planned additions. The planned capacity additions in High water risk provinces are 29.9 GW or 44% of proposed additions. The amount in provinces assessed as high risk from both air and water perspectives is 20.8 GW or 31%.

For the province level average statistic, in order to limit distortions from very high water stress sites, the contribution to the average for each site was capped at two.



Figure 7: Total planned capacity additions by company and province

| Province    | No.<br>plants | Capacity<br>addition<br>(MW) | China Power<br>International (MW) | China Resources<br>Power (MW) | China Shenhua<br>Energy (MW) | Datang International<br>Power (MW) | Guodian Power<br>Development (MW) | Huadian Power<br>International (MW) | Huaneng Power<br>International (MW) | Air<br>pollution<br>risk | Water<br>stress<br>risk |
|-------------|---------------|------------------------------|-----------------------------------|-------------------------------|------------------------------|------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|--------------------------|-------------------------|
| Anhui       | 12            | 10,640                       | 4,000                             | 1,320                         | 3,320                        | 0                                  | 2,000                             | 0                                   | 0                                   | High                     | Low                     |
| Shanxi      | 8             | 8,000                        | 2,000                             | 2,000                         | 0                            | 0                                  | 2,000                             | 0                                   | 2,000                               | High                     | High                    |
| Fujian      | 12            | 6,840                        | 0                                 | 0                             | 2,000                        | 2,000                              | 0                                 | 0                                   | 2,840                               | Medium                   | Low                     |
| Hunan       | 5             | 6,000                        | 0                                 | 0                             | 4,000                        | 0                                  | 0                                 | Ο                                   | 2,000                               | High                     | Low                     |
| Guangdong   | 8             | 5,900                        | 0                                 | 2,000                         | 2,000                        | 0                                  | 0                                 | 1,900                               | 0                                   | Low                      | Low                     |
| I. Mongolia | 8             | 5,840                        | Ο                                 | 1,200                         | 1,320                        | Ο                                  | 3,320                             | Ο                                   | Ο                                   | Medium                   | High                    |
| Shandong    | 5             | 4,660                        | 0                                 | 0                             | 0                            | 0                                  | 0                                 | 2,660                               | 2,000                               | High                     | High                    |
| Henan       | 4             | 4,000                        | 2,000                             | Ο                             | 2,000                        | Ο                                  | Ο                                 | Ο                                   | Ο                                   | High                     | High                    |
| Ningxia     | 6             | 3,300                        | 0                                 | 0                             | 0                            | 1,320                              | 660                               | 1,320                               | 0                                   | Medium                   | High                    |
| Jiangsu     | 5             | 2,124                        | Ο                                 | Ο                             | 2,000                        | 24                                 | Ο                                 | Ο                                   | 100                                 | High                     | Medium                  |
| Jiangxi     | 2             | 2,000                        | 0                                 | 0                             | 0                            | 2,000                              | 0                                 | 0                                   | 0                                   | Medium                   | Low                     |
| Shaanxi     | 2             | 2,000                        | Ο                                 | Ο                             | 2,000                        | Ο                                  | Ο                                 | Ο                                   | Ο                                   | High                     | High                    |
| Zhejiang    | 2             | 2,000                        | 0                                 | 2,000                         | 0                            | 0                                  | 0                                 | 0                                   | 0                                   | Medium                   | Medium                  |
| Hebei       | 4             | 1,400                        | 0                                 | О                             | 0                            | 700                                | 700                               | 0                                   | 0                                   | High                     | High                    |
| Guizhou     | 2             | 1,320                        | 0                                 | 1,320                         | 0                            | 0                                  | 0                                 | 0                                   | 0                                   | Medium                   | Low                     |
| Hubei       | 2             | 1,320                        | 1,320                             | 0                             | 0                            | 0                                  | 0                                 | 0                                   | 0                                   | High                     | Low                     |
| Liaoning    | 2             | 700                          | 0                                 | 0                             | 0                            | 0                                  | 700                               | 0                                   | 0                                   | High                     | High                    |
| TOTAL       | 89            | 68,044                       | 9,320                             | 9,840                         | 18,640                       | 6,044                              | 9,380                             | 5,880                               | 8,940                               |                          |                         |

Source: Company reports, news reports, ARE risk measures based on NASA/WRI

A picture of the risks at the company level already emerges as shown in Figure 8. There are some differences between the air and water risk profiles of the companies. Notably Datang has the lowest proportion of planned capacity additions in High air and water risk provinces at 12%, while Huaneng and Huadian have the highest proportion, both at 45% – Huadian is more exposed to water risk, while Huaneng is more exposed to air risk.



Figure 8: Planned capacity additions in High risk provinces

|                                                                         | China Power<br>International | China<br>Resources<br>Power | China<br>Shenhua<br>Energy | Datang<br>International<br>Power | Guodian<br>Power<br>Development | Huadian<br>Power<br>International | Huaneng<br>Power<br>International | TOTAL                      |
|-------------------------------------------------------------------------|------------------------------|-----------------------------|----------------------------|----------------------------------|---------------------------------|-----------------------------------|-----------------------------------|----------------------------|
| High air risk (GW) High water risk (GW) High air and water risk (GW)    | •                            | 3,320<br>3,200<br>2,000     | 13,320<br>5,320<br>4,000   | 724<br>2,020<br>700              | 5,400<br>7,380<br>3,400         | 2,660<br>3,980<br>2,660           | 6,100<br>4,000<br>4,000           | 40,844<br>29,900<br>20,760 |
| High air risk (%)<br>High water risk (%)<br>High air and water risk (%) | 100<br>43<br>43              | 34<br>33<br>20              | 71<br>29<br>21             | 12<br>33<br>12                   | 58<br>79<br>36                  | 45<br>68<br>45                    | 68<br>45<br>45                    | 60<br>44<br>31             |

Source: Company reports, news reports, ARE risk measures based on NASA/WRI

#### Digging down to plant level risk

Many key decisions on plant approvals and factors that can affect the economics of coal power plants are made at the provincial level. However, the environmental factors that shape the provincial risk profile may not apply uniformly across a province. For example, coastal power stations can draw water from the sea irrespective of the level of water stress in the rest of the province. For air pollution, local pollution can create regulatory pressure, but so can high levels of air pollution in cities even a few hundred kilometres away. For these reasons, we took a second step in the assessment and considered plant level factors.

For air pollution, we used two indicators, the PM2.5 measure at the plant location (a local measure) and PM2.5 300 km, which refers to the ninetieth percentile of PM2.5 values within 300 km of the plant location (a surrounding area measure). We assigned risk levels in the same way for each measure – Low = less than 35  $\mu$ g/m³, Medium for the range 35 to 50  $\mu$ g/m³, and High for higher levels.

We assessed water stressed risk using BWS at the plant location, with Low for results below 0.4, Medium for between 0.4 and 0.8, and High for BWS above 0.8. We introduced a further category, "No – coastal", for plants within 5 km of the coast.

We defined plants in the Highest risk category as those for which:

- local area air pollution risk was Medium or High
- surrounding area air pollution risk was High
- water stress risk was High

The data tables in the appendix show the full list of planned plants by company and include the plant level air and water risk factors, highlighting the plants in locations assessed as Highest risk.



# Assessing the companies

The plant level statistics allow for a more nuanced assessment of the risks associated with each company's proposed capital expenditure. Overall the proportion deemed in high risk on the combined measures falls from 33% to 23%. Huaneng still has the highest proportion of Highest risk capacity addition at 45%. The biggest difference between the risk measures is for Huadian, primarily because several of its proposed plants are on the coast in provinces with high water stress.

There is also a significant difference in the indicators for China Power International. The company has two proposed plants in Shanxi, which has the eighth highest average PM2.5 pollution of the provinces. However, these plants are in locations that are below the national target and so are not included in the Highest risk assessment.

Figure 9: Planned coal power plant investments with proportions in Highest risk locations

|                             | Plants | Capacity<br>(GW) | Cost estimate (RMB billion) | Highest<br>risk (GW) | Highest<br>risk (%) | High air/<br>water risk<br>provinces (%) |
|-----------------------------|--------|------------------|-----------------------------|----------------------|---------------------|------------------------------------------|
| China Power International   | 10     | 9.3              | 32.6                        | 2.0                  | 21                  | 43                                       |
| China Resources Power       | 12     | 9.8              | 34.4                        | 1.3                  | 13                  | 20                                       |
| China Shenhua Energy        | 19     | 18.6             | 65.2                        | 4.0                  | 21                  | 21                                       |
| Datang International Power  | 10     | 6.0              | 21.2                        | 0.7                  | 12                  | 12                                       |
| Guodian Power Development   | 14     | 9.4              | 32.8                        | 2.7                  | 29                  | 36                                       |
| Huadian Power International | 9      | 5.9              | 20.6                        | 0.7                  | 11                  | 45                                       |
| Huaneng Power International | 15     | 8.9              | 31.3                        | 4.0                  | 45                  | 45                                       |
| TOTAL                       | 89     | 68               | 238                         | 15                   | 23                  | 33                                       |

Source: Company reports, Coal Swarm, Greenpeace, ARE (China Resources Power and China Shenhua Energy do not provide lists of planned plants in their annual reports, so these are based on searches)



# Conclusion

We reviewed the companies' interim results statements to gain a sense of their strategy in light of the emerging risks to prospective returns. This did not provide much clarity. On one level this is not surprising. It is hard to develop strategy against a backdrop of changing market dynamics, consistent regulatory updates, and rising uncertainty.

Yet in uncertain times it is more important that companies exercise scrutiny over decisions that will have a significant effect on their future. It is the role of investors to support companies through asking management about their approach.

For investors in these companies, our top questions are:

- What are your detailed capex plans by plant and by province?
- What are your hurdle rates of return for new coal plants?
- How do the financial models for the new plants change in light of new regulations, particularly on air, water, and carbon, and other market dynamics?
- How have you changed your investment plans to reflect changing market conditions?

Where companies are unable to provide satisfactory answers, investors should press companies to postpone the spending plans until circumstances change, or cancel them altogether.



Appendix: Company Tables

| China Power In   | nternational               |                  |                      |                               |      |                                   |              | ,                     |      |                        |                          |                                                           |                                  |
|------------------|----------------------------|------------------|----------------------|-------------------------------|------|-----------------------------------|--------------|-----------------------|------|------------------------|--------------------------|-----------------------------------------------------------|----------------------------------|
| Number of plants | Proposed new capacity (GW) |                  | timation<br>billion) | Highest risk air<br>water (GW |      | nd Highest risk air and water (%) |              |                       |      | gh air/wa<br>provinces |                          | Total estimated lifetim<br>CO <sub>2</sub> emissions (Mt) |                                  |
| 10               | 9.32                       | 3:               | 2.6                  | 2.0                           |      | 21                                |              |                       |      | 43                     |                          | 958                                                       | }                                |
|                  |                            |                  |                      |                               |      |                                   |              | Estim                 | ated | Airı                   | pollution                | Water                                                     | Estimated                        |
| Power station    | Unit                       | Capacity<br>(MW) | Technology           | Area                          | Prov | ince                              | Plant type   | cost (RMB<br>billion) |      | Local<br>risk          | Surrounding<br>area risk | g Stress risk                                             | lifetime<br>CO <sub>2</sub> (Mt) |
| CPI Pingwei      | CPI Pingwei-IV - Unit 1    | 1,000            | Ultra-supercriti     | cal Huainan                   | An   | nui                               | Conventional | 3,5                   | 00   | High                   | High                     | Low                                                       | 101                              |
| CPI Pingwei      | CPI Pingwei-IV - Unit 2    | 1,000            | Ultra-supercriti     | cal Huainan                   | An   | nui                               | Conventional | 3,5                   | 00   | High                   | High                     | Low                                                       | 101                              |
| CPI Pingwei      | CPI Pingwei-IV - Unit 3    | 1,000            | Ultra-supercriti     | cal Huainan                   | An   | nui                               | Conventional | 3,5                   | 00   | High                   | High                     | Low                                                       | 101                              |
| CPI Pingwei      | CPI Pingwei-IV - Unit 4    | 1,000            | Ultra-supercriti     | cal Huainan                   | An   | nui                               | Conventional | 3,5                   | 00   | High                   | High                     | Low                                                       | 101                              |
| Yaomeng          | Yaomeng-II - Unit 1        | 1,000            | Ultra-supercriti     | cal Pingdingshan              | Her  | nan                               | Conventional | 3,5                   | 00   | High                   | High                     | High                                                      | 101                              |
| Yaomeng          | Yaomeng-II - Unit 2        | 1,000            | Ultra-supercriti     | cal Pingdingshan              | Her  | nan                               | Conventional | 3,5                   | 00   | High                   | High                     | High                                                      | 101                              |
| CPI Dabieshan    | Dabieshan 3                | 660              | Supercritica         | Huanggang                     | Hul  | oei                               | Conventional | 2,3                   | 10   | Medium                 | High                     | Low                                                       | 73                               |
| CPI Dabieshan    | Dabieshan 4                | 660              | Supercritica         | Huanggang                     | Hul  | oei                               | Conventional | 2,3                   | 10   | Medium                 | High                     | Low                                                       | 73                               |
| CPI Shentou      | Shentou 3                  | 1,000            | Ultra-supercriti     | cal Shuozhou                  | Sha  | nxi                               | Conventional | 3,5                   | 00   | Low                    | High                     | High                                                      | 101                              |
| CPI Shentou      | Shentou 4                  | 1,000            | Ultra-supercriti     | cal Shuozhou                  | Sha  | nxi                               | Conventional | 3,5                   | 00   | Low                    | High                     | High                                                      | 101                              |



| China Resource          |                            |                  |                      |             |                |              |           |                         |                          |                                                           |                                  |
|-------------------------|----------------------------|------------------|----------------------|-------------|----------------|--------------|-----------|-------------------------|--------------------------|-----------------------------------------------------------|----------------------------------|
| Number of plants        | Proposed new capacity (GW) |                  | timation<br>billion) |             |                |              | nd F      | ligh air/wa<br>province |                          | Total estimated lifetin<br>CO <sub>2</sub> emissions (Mt) |                                  |
| 12                      | 9.8                        | 34               | 4.4                  | 1.3         |                | 13           |           | 20                      |                          | 1,04                                                      | 9                                |
|                         |                            |                  |                      |             |                |              | Estimated | Air                     | pollution                | Water                                                     | Estimated                        |
| Power station           | Unit                       | Capacity<br>(MW) | Technology           | Area        | Province       | Plant type   | cost (RME |                         | Surrounding<br>area risk | g Stress risk                                             | lifetime<br>CO <sub>2</sub> (Mt) |
| Fuyang                  | Fuyang - Phase II Unit 1   | 660              | Ultra-supercriti     | cal         | Anhui          | Conventional | 2,310     | High                    | High                     | High                                                      | 68                               |
| Fuyang                  | Fuyang - Phase II Unit 2   | 660              | Ultra-supercriti     | cal         | Anhui          | Conventional | 2,310     | High                    | High                     | High                                                      | 68                               |
| Shanwei Haifeng         | Shanwei Haifeng 3          | 1,000            | Ultra-supercriti     | cal Shanwei | Guangdong      | Conventional | Low       | Low                     | Medium                   | No - coastal                                              | 101                              |
| Shanwei Haifeng         | Shanwei Haifeng 4          | 1,000            | Ultra-supercriti     | cal Shanwei | Guangdong      | Conventional | Low       | Low                     | Medium                   | No - coastal                                              | 101                              |
| CR Liuzhi               | CR Liuzhi Unit 3           | 660              | Unknown              | Liupanshui  | Guizhou        | Conventional | Low       | Low                     | Medium                   | Low                                                       | 73                               |
| CR Liuzhi               | CR Liuzhi Unit 4           | 660              | Unknown              | Liupanshui  | Guizhou        | Conventional | Low       | Low                     | Medium                   | Low                                                       | 73                               |
| China Resources Dengkou | Dengkou 3                  | 600              | Subcritical          | Bayannur    | Inner Mongolia | Conventional | Low       | Low                     | Low                      | High                                                      | 70                               |
| China Resources Dengkou | Dengkou 4                  | 600              | Subcritical          | Bayannur    | Inner Mongolia | Conventional | Low       | Low                     | Low                      | High                                                      | 70                               |
| Ningwu Gangue           | Ningwu Gangue - Unit 3     | 1,000            | Supercritical        | Xinzhou     | Shanxi         | Conventional | Low       | Low                     | High                     | High                                                      | 111                              |
| Ningwu Gangue           | Ningwu Gangue - Unit 4     | 1,000            | Supercritical        | Xinzhou     | Shanxi         | Conventional | Low       | Low                     | High                     | High                                                      | 111                              |
| Huarun Cangnan          | Cangnan 3                  | 1,000            | Ultra-supercriti     | cal Wenzhou | Zhejiang       | Conventional | Low       | Low                     | Medium                   | No - coastal                                              | 101                              |
| Huarun Cangnan          | Cangnan 4                  | 1,000            | Ultra-supercriti     | cal Wenzhou | Zhejiang       | Conventional | Low       | Low                     | Medium                   | No - coastal                                              | 101                              |

Hefei Lujiang - Unit 2

Hefei Lujiang

660

Ultra-supercritical



| Number of plants           | Energy Proposed new capacity | Cost as          | timation         | Highest risk air and Highe |               |         | nest risk air ar | м Н                   | gh air/wa     | otor rick                | Total estimate                 | ad lifetime                      |
|----------------------------|------------------------------|------------------|------------------|----------------------------|---------------|---------|------------------|-----------------------|---------------|--------------------------|--------------------------------|----------------------------------|
| Number of plants           | (GW)                         |                  | billion)         | water (GW                  |               | iligi   | water (%)        | "   "                 | province      |                          | CO <sub>2</sub> emissions (Mt) |                                  |
| 19                         | 18.64                        | 6                | 5.2              | 4.0                        |               | 21      |                  |                       | 21            |                          | 1,962                          | 2                                |
|                            |                              |                  |                  |                            |               |         |                  | Estimated             | Air           | pollution                | Water                          | Estimated                        |
| Power station              | Unit                         | Capacity<br>(MW) | Technology       | Area                       | Prov          | ince    | Plant type       | cost (RMB<br>billion) | Local<br>risk | Surrounding<br>area risk | Stress risk                    | lifetime<br>CO <sub>2</sub> (Mt) |
| Luoyuan Bay                | Luoyuan Bay 3                | 1,000            | Ultra-supercriti | cal Fuzhou                 | Fuji          | ian     | Conventional     | 3,500                 | Low           | Low                      | Low                            | 101                              |
| Luoyuan Bay                | Luoyuan Bay 4                | 1,000            | Ultra-supercriti | cal Fuzhou                 | Fuji          | ian     | Conventional     | 3,500                 | Low           | Low                      | Low                            | 101                              |
| Shenhua Hulunber Baorixile | Phase II Unit 3              | 660              | Unknown          | Hulunbuir                  | Inner Mo      | ongolia | Conventional     | 2,310                 | Low           | Low                      | Low                            | 73                               |
| Shenhua Hulunber Baorixile | Phase II Unit 4              | 660              | Unknown          | Hulunbuir                  | Inner M       | ongolia | Conventional     | 2,310                 | Low           | Low                      | Low                            | 73                               |
| Jiangsu Guohua Chenjiagang | Chenjiagang 3                | 1,000            | Unknown          | Yancheng                   | Jian          | gsu     | Conventional     | 3,500                 | Medium        | High                     | High                           | 111                              |
| Jiangsu Guohua Chenjiagang | Chenjiagang 4                | 1,000            | Unknown          | Yancheng                   | Yancheng Jiar |         | Conventional     | 3,500                 | Medium        | High                     | High                           | 111                              |
| Guohua Taishan             | Guohua Taishan 8             | 1,000            | Ultra-supercriti | cal Jiangmen               | Guang         | dong    | Conventional     | 3,500                 | Low           | Medium                   | No - coastal                   | 101                              |
| Guohua Taishan             | Guohua Taishan 9             | 1,000            | Ultra-supercriti | cal Jiangmen               | Guang         | dong    | Conventional     | 3,500                 | Low           | Medium                   | No - coastal                   | 101                              |
| Shenhua Yueyang            | Shenhua Yueyang 1            | 1,000            | Ultra-supercriti | cal Yueyang                | Hur           | nan     | Conventional     | 3,500                 | High          | High                     | Low                            | 101                              |
| Shenhua Yueyang            | Shenhua Yueyang 2            | 1,000            | Ultra-supercriti | cal Yueyang                | Hur           | nan     | Conventional     | 3,500                 | High          | High                     | Low                            | 101                              |
| Shenhua Yueyang            | Shenhua Yueyang Phase II     | 2,000            | Ultra-supercriti | cal Yueyang                | Hur           | nan     | Conventional     | 7,000                 | High          | High                     | Low                            | 203                              |
| Shenhua Guohua Jinjie      | PP Phase II Unit 1           | 1,000            | Unknown          | Yulin                      | Shaa          | enxi    | Conventional     | 3,500                 | Low           | Medium                   | Low                            | 111                              |
| Shenhua Guohua Jinjie      | PP Phase II Unit 2           | 1,000            | Unknown          | Yulin                      | Shaa          | anxi    | Conventional     | 3,500                 | Low           | Medium                   | Low                            | 111                              |
| Luoyang Mengjin            | Luoyang Mengjin 3            | 1,000            | Supercritica     | Luoyang                    | Her           | nan     | Conventional     | 3,500                 | High          | High                     | High                           | 111                              |
| Luoyang Mengjin            | Luoyang Mengjin 4            | 1,000            | Supercritica     | Luoyang                    | Her           | nan     | Conventional     | 3,500                 | High          | High                     | High                           | 111                              |
| Chizhou Jiuhua             | Chizhou Jiuhua - Unit 3      | 1,000            | Ultra-supercriti | cal Chizhou                | Anl           | nui     | Conventional     | 3,500                 | Medium        | High                     | Low                            | 101                              |
| Chizhou Jiuhua             | Chizhou Jiuhua - Unit 4      | 1,000            | Ultra-supercriti | cal Chizhou                | Anl           | nui     | Conventional     | 3,500                 | Medium        | High                     | Low                            | 101                              |
| Hefei Lujiang              | Hefei Lujiang - Unit 1       | 660              | Ultra-supercriti | cal                        | Anl           | nui     | Conventional     | 2,310                 | High          | High                     | Low                            | 68                               |

Anhui

68

Low

2,310

High

High

Conventional



| Number of plants        | Proposed new capacity (GW) |                  | timation<br>billion) |               |           | d Highest risk air and water (%) |                  |           | igh air/wa<br>province: |                          | Total estimated lifetim CO <sub>2</sub> emissions (Mt) |                                  |
|-------------------------|----------------------------|------------------|----------------------|---------------|-----------|----------------------------------|------------------|-----------|-------------------------|--------------------------|--------------------------------------------------------|----------------------------------|
| 10                      | 6.044                      | 2                | 1.2                  | 0.7           |           |                                  | 12               |           | 12                      |                          | 672                                                    |                                  |
|                         |                            |                  |                      |               |           |                                  |                  | Estimated | Air                     | pollution                | Water                                                  | Estimated                        |
| Power station           | Unit                       | Capacity<br>(MW) | Technology           | Area          | rea Provi |                                  | rince Plant type |           | Local<br>risk           | Surrounding<br>area risk | Stress risk                                            | lifetime<br>CO <sub>2</sub> (Mt) |
| Datang Ningde           | Datang Ningde 5            | 1,000            | Supercritical        | Ningde        | Fuji      | ian                              | Conventional     | 3,500     | Low                     | Low                      | No - coastal                                           | 111                              |
| Datang Ningde           | Datang Ningde 6            | 1,000            | Supercritical        | Ningde        | Fuji      | ian                              | Conventional     | 3,500     | Low                     | Low                      | No - coastal                                           | 111                              |
| Datang Tangshan Beijiao | Tangshan Beijiao 1         | 350              | Unknown              | Tangshan      | Hel       | oei                              | District CHP     | 1,225     | High                    | High                     | High                                                   | 44                               |
| Datang Tangshan Beijiao | Tangshan Beijiao 2         | 350              | Unknown              | Tangshan      | Hel       | oei                              | District CHP     | 1,225     | High                    | High                     | High                                                   | 44                               |
| Datang Pingluo          | Pingluo Unit 1             | 660              | Ultra-supercrition   | al Shizuishan | Ning      | gxia                             | Conventional     | 2,310     | Low                     | Low                      | High                                                   | 68                               |
| Datang Pingluo          | Pingluo Unit 2             | 660              | Ultra-supercritic    | al Shizuishan | Ning      | gxia                             | Conventional     | 2,310     | Low                     | Low                      | High                                                   | 68                               |
| Datang Xinyu            | Xinyu-2 No 1               | 1,000            | Supercritical        | Xinyu         | Jian      | ıgxi                             | Conventional     | 3,500     | Medium                  | Medium                   | Low                                                    | 111                              |
| Datang Xinyu            | Xinyu-2 No 2               | 1,000            | Supercritical        | Xinyu         | Jian      | gxi                              | Conventional     | 3,500     | Medium                  | Medium                   | Low                                                    | 111                              |
| Datang Rugao            | Rugao Unit 1               | 12               | Unknown              | Rugao         | Jian      | gsu                              | District CHP     | 42        | High                    | High                     | Medium                                                 | 3                                |
| Datang Rugao            | Rugao Unit 2               | 12               | Unknown              | Rugao         | Jian      | gsu                              | District CHP     | 42        | High                    | High                     | Medium                                                 | 3                                |

Phase I Unit 1

Phase I Unit 2

Datong Hudong Unit 1

Datong Hudong Unit 2

660

660

1.000

1,000

Unknown

Unknown

Unknown

Unknown

Guodian Zhunger Changtan

Guodian Zhunger Changtan

Guodian Datong Donghu

Guodian Datong Donghu



#### **Guodian Power Development** Number of plants Proposed new capacity Cost estimation Highest risk air and Highest risk air and High air/water risk Total estimated lifetime (GW) (RMB billion) water (GW) water (%) provinces (%) CO<sub>2</sub> emissions (Mt) 1,036 14 9.38 32.8 2.7 29 36 Air pollution Water Estimated **Estimated** lifetime cost (RMB Capacity Local Surrounding Stress risk CO, (Mt) billion) Power station Unit (MW) Technology **Province** Plant type area risk Area risk Tongling Guodian 3.500 Tongling Guodian-2 - Unit 1 1.000 Ultra-supercritical Conventional Hiah 101 Tongling Anhui High Low Tongling Guodian Tongling Guodian-2 - Unit 2 1,000 Ultra-supercritical Anhui Conventional 3,500 High High 101 Tongling Low Guodian Dawukou Dawukou 7 330 Supercritical Shizuishan Ningxia District CHP 1,155 Medium High 41 Low Guodian Dawukou Dawukou 8 330 Supercritical Shizuishan Ningxia District CHP 1,155 Low Medium High 41 350 1,225 46 Pulandian Cogen Pulandian Cogen 1 Subcritical Dalian Liaoning District CHP Medium High No - coastal 350 1.225 46 Pulandian Cogen Pulandian Cogen 2 Subcritical Dalian District CHP Medium High No - coastal Liaoning Guodian Zunhua-2 Zunhua-2 No 1 350 Supercritical Tangshan Hebei District CHP 1,225 High High High 44 Zunhua-2 No 2 1,225 Guodian Zunhua-2 350 Supercritical Tangshan Hebei District CHP High High High 44 Guodian Shuangwei Unit 1 1,000 Ultra-supercritical Ordos Inner Mongolia Conventional 3,500 Low Medium Low 101 Shanghaimiao Guodian Shuangwei Unit 2 Ultra-supercritical Ordos Inner Mongolia Conventional 3,500 101 1,000 Medium Low Low Shanghaimiao

Ordos

Ordos

Datong

Datong

Inner Mongolia

Inner Mongolia

Shanxi

Shanxi

Conventional

Conventional

Conventional

Conventional

2,310

2.310

3.500

3,500

Low

Low

Medium

Medium

Medium

Medium

High

High

Low

Low

High

High

73

73

111

111



| Number of plants          | Proposed new capacity (GW) |                  | timation<br>billion) |                | lighest risk air and Highest risk ai<br>water (GW) water (%) |      | hest risk air ar<br>water (%) | nd                 | •       | water risk<br>ces (%)  | Total estimate CO <sub>2</sub> emission |                                  |
|---------------------------|----------------------------|------------------|----------------------|----------------|--------------------------------------------------------------|------|-------------------------------|--------------------|---------|------------------------|-----------------------------------------|----------------------------------|
| 9                         | 5.88                       | 20               | 0.6                  | 0.7            |                                                              |      | 11                            |                    | 4       | 5                      | 616                                     | ,                                |
| <u>.</u>                  |                            |                  |                      |                |                                                              |      |                               | Estimat            | ted /   | ir pollution           | Water                                   | Estimated                        |
| Power station             | Unit                       | Capacity<br>(MW) | Technology           | Area           | Prov                                                         | ince | Plant type                    | cost (R<br>billior | MB Loca | Surroundi<br>area risk | 9                                       | lifetime<br>CO <sub>2</sub> (Mt) |
| Huadian Shiliquan         | Shiliquan-III No 2         | 660              | Ultra-supercrit      | ical Zaozhuang | Shand                                                        | dong | Conventional                  | 2,310              | ) High  | High                   | High                                    | 68                               |
| Huadian Laizhou           | Huadian Laizhou 3          | 1,000            | Ultra-supercrit      | ical Yantai    | Shand                                                        | dong | Conventional                  | 3,500              | ) Mediu | m High                 | No - coastal                            | 101                              |
| Huadian Laizhou           | Huadian Laizhou 4          | 1,000            | Ultra-supercrit      | ical Yantai    | Shand                                                        | dong | Conventional                  | 3,500              | ) Mediu | m High                 | No - coastal                            | 101                              |
| Huadian Yongli            | Huadian Yongli Unit 1      | 660              | Ultra-supercrit      | ical Yinchuan  | Ning                                                         | yxia | Conventional                  | 2,310              | Low     | Medium                 | High                                    | 68                               |
| Huadian Yongli            | Huadian Yongli Unit 2      | 660              | Ultra-supercrit      | ical Yinchuan  | Ning                                                         | yxia | Conventional                  | 2,310              | Low     | Medium                 | High                                    | 68                               |
| Huadian Shantou Fengsheng | Unit 1                     | 600              | Ultra-supercrit      | ical Shantou   | Guang                                                        | dong | Conventional                  | 2,100              | Low     | Low                    | No - coastal                            | 61                               |
| Huadian Shantou Fengsheng | Unit 2                     | 600              | Ultra-supercrit      | ical Shantou   | Guang                                                        | dong | Conventional                  | 2,100              | Low     | Low                    | No - coastal                            | 61                               |
| Huadian Nanxiong          | Huadian Nanxiong - Unit 1  | 350              | Supercritica         | l Shaoguan     | Guang                                                        | dong | District CHP                  | 1,225              | Mediu   | m Medium               | Low                                     | 44                               |
| Huadian Nanxiong          | Huadian Nanxiong - Unit 2  | 350              | Supercritica         | l Shaoguan     | Guang                                                        | dong | District CHP                  | 1,225              | Mediu   | m Medium               | Low                                     | 44                               |

Huaneng Shanyin 2

Huaneng Shanyin



| Number of plants | Proposed new capacity (GW)  8.94  Unit | Cost estimation<br>(RMB billion) |                   | Highest risk air and<br>water (GW)<br>4.0 |          | Highest risk air and water (%) |                       | High air/water risk provinces (%) |                          | Total estimated lifetime CO <sub>2</sub> emissions (Mt) |                                  |
|------------------|----------------------------------------|----------------------------------|-------------------|-------------------------------------------|----------|--------------------------------|-----------------------|-----------------------------------|--------------------------|---------------------------------------------------------|----------------------------------|
| 15 Power station |                                        |                                  |                   |                                           |          |                                |                       |                                   |                          |                                                         |                                  |
|                  |                                        | Capacity<br>(MW)                 | Technology        | Area                                      |          |                                | Estimated             | Air                               | pollution                | a Stross risk lif                                       | Estimated                        |
|                  |                                        |                                  |                   |                                           | Province | Plant type                     | cost (RME<br>billion) |                                   | Surrounding<br>area risk |                                                         | lifetime<br>CO <sub>2</sub> (Mt) |
| Huaneng Yueyang  | Huaneng Yueyang - Unit 7               | 1,000                            | Ultra-supercritic | al Yueyang                                | Hunan    | Conventional                   | 3,500                 | High                              | High                     | Low                                                     | 101                              |
| Huaneng Yueyang  | Huaneng Yueyang - Unit 8               | 1,000                            | Ultra-supercritic | al Yueyang                                | Hunan    | Conventional                   | 3,500                 | High                              | High                     | Low                                                     | 101                              |
| Huaneng Gulei    | Gulei Unit 1                           | 660                              | Ultra-supercritic | al Zhangzhou                              | Fujian   | District CHP                   | 2,310                 | Low                               | Low                      | No - coastal                                            | 82                               |
| Huaneng Gulei    | Gulei Unit 2                           | 660                              | Ultra-supercritic | al Zhangzhou                              | Fujian   | District CHP                   | 2,310                 | Low                               | Low                      | No - coastal                                            | 82                               |
| Huaneng Gulei    | Gulei Unit 3                           | 50                               | Unknown           | Zhangzhou                                 | Fujian   | District CHP                   | 175                   | Low                               | Low                      | No - coastal                                            | 10                               |
| Huaneng Gulei    | Gulei Unit 4                           | 50                               | Unknown           | Zhangzhou                                 | Fujian   | District CHP                   | 175                   | Low                               | Low                      | No - coastal                                            | 10                               |
| Huaneng Gulei    | Gulei Unit 5                           | 50                               | Unknown           | Zhangzhou                                 | Fujian   | District CHP                   | 175                   | Low                               | Low                      | No - coastal                                            | 10                               |
| Huaneng Gulei    | Gulei Unit 6                           | 50                               | Unknown           | Zhangzhou                                 | Fujian   | District CHP                   | 175                   | Low                               | Low                      | No - coastal                                            | 10                               |
| Huaneng Luoyuan  | Luoyuan 1                              | 660                              | Ultra-supercritic | al Fuzhou                                 | Fujian   | Conventional                   | 2,310                 | Low                               | Low                      | No - coastal                                            | 68                               |
| Huaneng Luoyuan  | Luoyuan 2                              | 660                              | Ultra-supercritic | al Fuzhou                                 | Fujian   | Conventional                   | 2,310                 | Low                               | Low                      | No - coastal                                            | 68                               |
| Huaneng Nanjing  | Huaneng Nanjing-1 - Unit 3             | 100                              | Unknown           | Nanjing                                   | Jiangsu  | Conventional                   | 350                   | High                              | High                     | Low                                                     | 12                               |
| Huaneng Zhanhua  | Zhanhua 5                              | 1,000                            | Supercritical     | Binzhou                                   | Shandong | Conventional                   | 3,500                 | High                              | High                     | High                                                    | 111                              |
| Huaneng Zhanhua  | Zhanhua 6                              | 1,000                            | Supercritical     | Binzhou                                   | Shandong | Conventional                   | 3,500                 | High                              | High                     | High                                                    | 111                              |
| Huaneng Shanyin  | Huaneng Shanyin 1                      | 1.000                            | Ultra-supercritic | al Shuozhou                               | Shanxi   | Conventional                   | 3,500                 | Medium                            | High                     | High                                                    | 101                              |

Shuozhou

Conventional

Shanxi

3,500

Medium

High

High

Ultra-supercritical

1,000

101

| ARE has taken all reasonable precautions to ensure that the information contained in this Report is current, accurate and complete on the date of publication. No representations or warranties are made (expressed or implied) as to the reliability, accuracy or completeness of such information. Although every reasonable effort is made to present current and accurate information, ARE does not take any responsibility for any loss arising directly or indirectly from the use of, or any action taken in reliance on, any information appearing in this Report. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In viewing and/or printing any information available to you in this Report, you are solely responsible for bearing the relevant liabilities and risks. ARE does not warrant the accuracy of this Report or that it is free from any errors or defects.                                                                                                                                                                                                                                                                                                                     |
| No content in this Report should be regarded as an offer or solicitation by ARE to sell investment products in any country to any person.                                                                                                                                                                                                                                                                                                                                                                                                                                  |